Radian Measure (Section 4.1)

1. An angle is determined by _____

The starting position of the ray is the ______ of the angle, and the

position after rotation is the ______. The endpoint of the ray is

the _____ of the angle.

2. It is convenient to position an angle on a coordinate graph with the vertex at the

_____ and the initial side on the ______.

This is called ______ position.

Initial side

3. Positive angles are generated by ______.

Negative angles are generated by ______.

Radian Measure (Section 4.1)

4. Angles that have the same initial and terminal sides are called ______

5. The measure of an angle is determined by _____

Definition of Radian

One radian is the measure of a central angle θ that intercepts an arc *s* equal in length to the radius *r* of the circle.

Formula:

6. From the above exercise about how many radians are there in one full revolution ?

7. The arc length of one full revolution is equal to ______.

Radian Measure (Section 4.1)

- 8. Therefore, using the formula above, one full revolution is exactly _____ radians.
- 9. Is the answer for #8 consistent with the answer from the exercise? Explain.
- 10. Fill out the common radian measures on the circle below.

Finding and Sketching Coterminal Angles

Example: Find two coterminal angles by adding and subtracting 2π . Sketch.

a)
$$\theta = \frac{13\pi}{6}$$
 b) $\theta = \frac{3\pi}{4}$ c) $\theta = -\frac{2\pi}{3}$

d)
$$\theta = \frac{9\pi}{4}$$
 e) $\theta = \frac{5\pi}{6}$ f) $\theta = -\frac{3\pi}{4}$